

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-11/0120 vom 6. Juli 2018

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

SB Kopfbolzen aus Stahl

Einbetonierte und an Stahlplatten angeschweißte Kopfbolzen aus Stahl

Bolte GmbH Flurstraße 25 58285 Gevelsberg DEUTSCHLAND

Werk 1

15 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330084-00-0601

ETA-11/0120 vom 19. Mai 2016

Europäische Technische Bewertung ETA-11/0120

Seite 2 von 15 | 6. Juli 2018

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z38360.18 8.06.01-571/18

Europäische Technische Bewertung ETA-11/0120

Seite 3 von 15 | 6. Juli 2018

Besonderer Teil

1 Technische Beschreibung des Produkts

Die SB Kopfbolzen, die an eine Stahlplatte angeschweißt werden, bestehen aus Stahl.

Die Kopfbolzen besitzen einen Schaftdurchmesser von 10, 13, 16, 19, 22 und 25 mm. An einem Ende ist ein Kopf aufgestaucht. Das andere Ende ist für das Hubzündungs-Bolzenschweißen mit Keramikring oder Schutzgas (Prozess 783 nach EN ISO 4063:2002-02) vorbereitet.

Die Stahlplatte mit aufgeschweißten Kopfbolzen wird oberflächenbündig einbetoniert.

In Anhang A ist die Produktbeschreibung dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Anker entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Ankers von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produktes im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C1
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C2
Verschiebungen (statische und quasi-statische Einwirkungen)	Siehe Anhang C1 bis C2
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Keine Leistung bestimmt

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1

Z38360.18 8.06.01-571/18

Europäische Technische Bewertung ETA-11/0120

Seite 4 von 15 | 6. Juli 2018

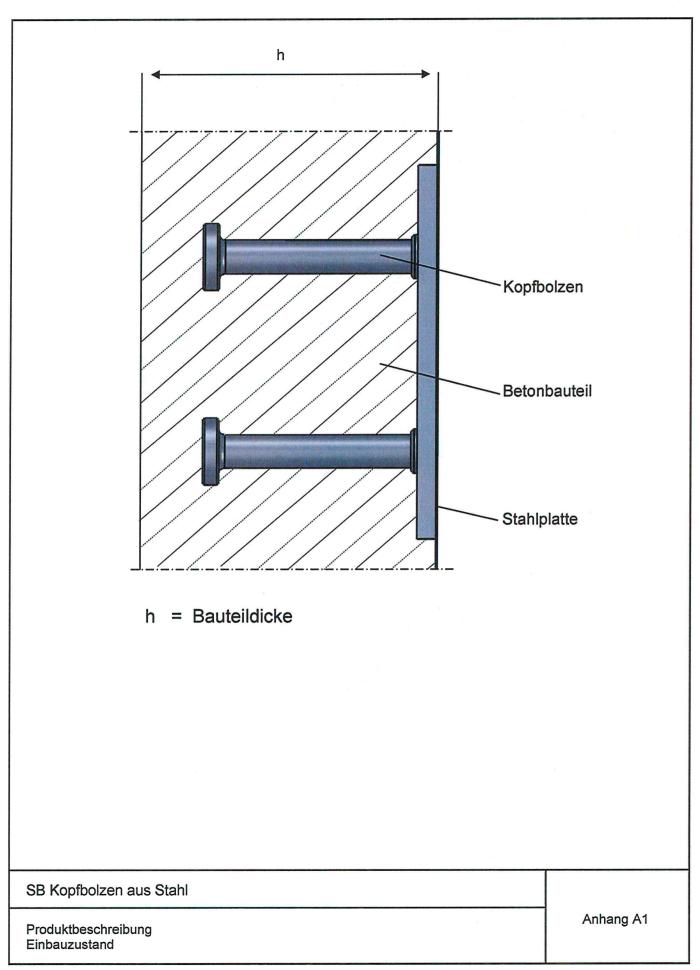
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330084-00-0601 gilt folgende Rechtsgrundlage:

[96/582/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 6. Juli 2018 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

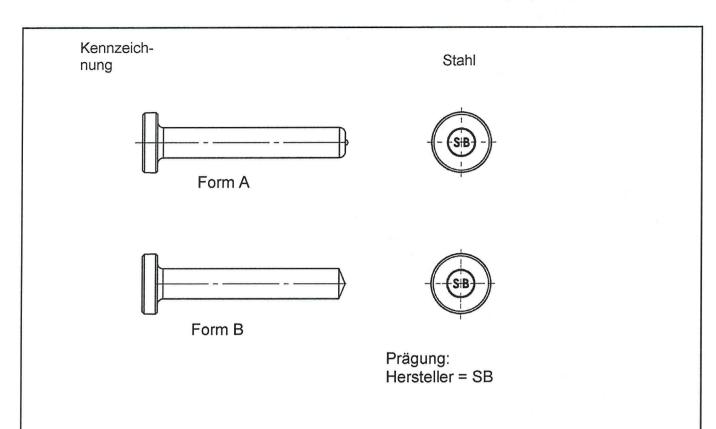


Tabelle 1: **Abmessungen**

	Schaft ø	Kopf Ø	Nenn	länge	Kopfhöhe
Kopfbolzen- typ	d [mm]	d _h [mm]	min h _n [mm]	max h _n [mm]	t _h [mm]
10	10	19	50	200	7.1
13	13	25	50	400	8
16	16	32	50	525	8
19	19	32	75	525	10
22	22	35	75	525	10
25	25	41	75	525	12

SB Kopfbolzen aus Stahl		
Produktbeschreibung Abmessungen und Kennzeichnung	Anhang A2	

Tabelle 2: Werkstoffe für Stahl		
	Mechanische	

	1		Mechanische	
Teil	Bezeichnung	Werkstoff	Eigenschaften	Verwendungszweck
1	Kopfbolzen nach	Beruhigter Stahl	f _{uk} ≥ 450 N/mm ²	Stahlplatten mit
	EN ISO 13918:2008	gemäß Werkstoff-	$f_{yk} \ge 350 \text{ N/mm}^2$	angeschweißten
	Type SD1	gruppe 1 ISO/TR	· ,	Kopfbolzen dürfen
		15608 mit den	, a	nur in Bauteilen
		Grenzwerten		unter den
		gemäß EN ISO		Bedingungen
	1	13918:2008,		trockener Innen-
		Tabelle 2 (zum		räume verwendet
	1	Beispiel		werden.
		S235J2+C450 nach		
		EN10025:2005)		
2	Stahlplatte	Stahl S235JR;	$f_{uk} = 340-470 \text{ N/mm}^2$	
		S235JO; S235J2	$f_{yk} = 255 \text{ N/mm}^2$	
		nach		
		EN 10025:2005		
		Stahl S355JO;	f _{uk} = 510-680 N/mm ²	
		S355J2 nach	$f_{yk} = 345 \text{ N/mm}^2$	
		to EN 10025:2005		
		10 11 10020.2000		

SB	Kopfbolzen	aus Stahl	
CD	Kopiboizen	ado Otarri	

Produktbeschreibung Werkstoffe Anhang A3

Anwendungsbedingungen

Beanspruchungen der Stahlplatte mit angeschweissten und einbetonierten Kopfbolzen:

Statische und quasi-statische Belastung durch Zug- und Querzug.

Verankerungsgrund:

- Bewehrter Normalbeton nach EN 206-1:2000
- Festigkeitsklassen C20/25 bis C90/105 nach EN 206-1:2000
- Gerissener oder ungerissener Beton.

Anwendungsbedingungen (Umgebungsbedingungen):

Bauteile unter Bedingungen trockener Innenräume

Bemessung:

- Stahlplatten mit einbetonierten Kopfbolzen müssen unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs bemessen werden.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage der Anker anzugeben (z. B. Lage der Anker zur Bewehrung oder zu den Auflagern).
- Die Bemessung von Ankern unter statischer und quasi-statischer Belastung erfolgt gemäß CEN/TS 1992-4-1:2009 und CEN/TS 1992-4-2:2009.
- Es wird grundsätzlich davon ausgegangen, dass der Beton gerissen ist und die auftretenden Spaltkräfte von der Bewehrung aufgenommen werden. Der erforderliche Querschnitt einer Mindestbewehrung wird entsprechend CEN/TS 1992-4-2:2009 Abschnitt 6.2.6.2 b) ermittelt.

Einbau:

Anschweißen der Kopfbolzen an die Stahlplatte

- Stahlplatten, an die Kopfbolzen angeschweißt werden, bestehen aus den Werkstoffen S235JR, S235JO, S235J2, S355JO oder S355J2 gemäß Anhang A3, Tabelle 2
- Die Kopfbolzen müssen an die Stahlplatte durch Hubzündungs-Bolzenschweißen mit Keramikringen oder Schutzgas nach EN ISO 14555:2017 angeschweißt werden.
- Die Stufe der Qualitätsanforderungen entspricht EN ISO 3834-3:2005
- Ein möglicherweise nicht homogener Aufbau der Stahlplatte (z. B. Terrassenbruch / Dopplungen) in Richtung der Dicke ist zu berücksichtigen.
- Das Anschweißen der Kopfbolzen durch Hubzündungs-Bolzenschweißen kann im Herstellungsbetrieb oder auf der Baustelle durchgeführt werden.
- Für das Schweißen der Kopfbolzen an die Stahlplatte verfügt die ausführende Firma über eine gültige Zulassung für Hubzündungs-Bolzenschweißen nach EN ISO 14555:2017

SB Kopfbolzen aus Stahl	
Verwendungszweck Spezifikationen	Anhang B1

Einbetonieren der Stahlplatten

- Einbau der Kopfbolzen erfolgt durch entsprechend qualifiziertes Personal unter der Aufsicht des Verantwortlichen für technische Fragen vor Ort.
- Verwendung des Produkts nur so, wie vom Hersteller geliefert.
- Einbau nach der Montageanleitung des Herstellers gemäß Anhang B4, B5 und B6.
- Verankerungen sind so an der Schalung, Bewehrung oder Hilfskonstruktion zu fixieren, dass sie sich beim Verlegen der Bewehrung sowie beim Einbringen und Verdichten des Betons nicht bewegen.
- Einwandfreie Verdichtung des Betons unter dem Kopf der Kopfbolzen.
- Bei großen Anbauteilen (Stahlplatte > 400 mm x 400 mm) sind Entlüftungsöffnungen gemäß Angabe in den Konstruktionszeichnungen vorzusehen.

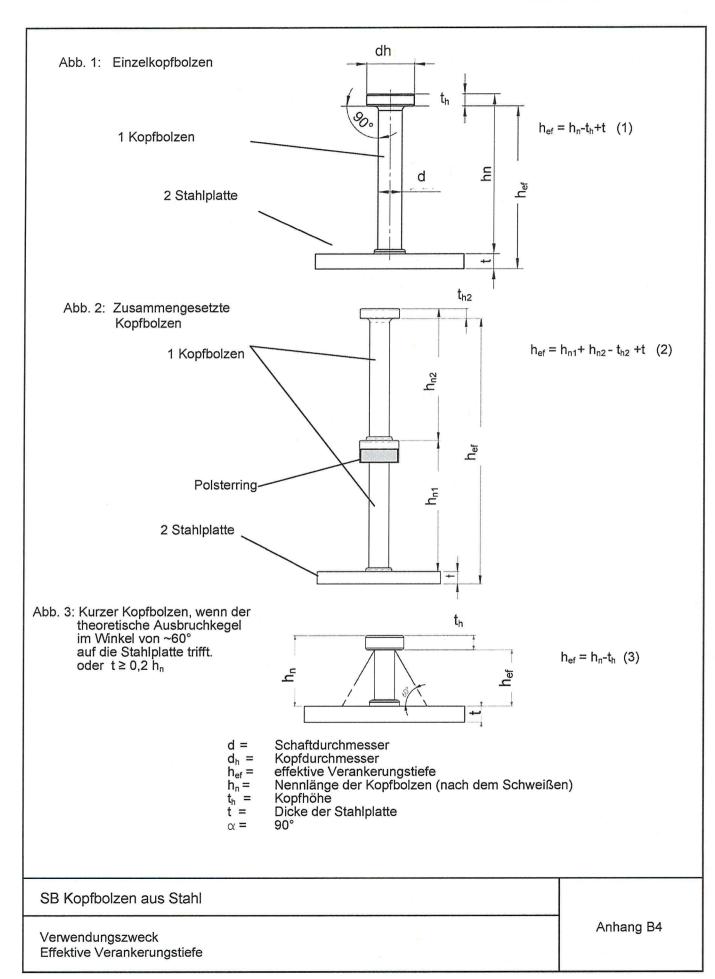
SB Kopfbolzen aus Stahl	
Verwendungszweck Spezifikationen	Anhang B2

Tabelle 3: Montagekennwerte für Kopfbolzen aus Stahl

Nenngröße (mm)		10	13	16	19	22	2 5
Verankerungstiefe	min h _{ef} [mm]	50	50	50	75	75	75
minimaler Achsabstand	s _{min} [mm]	50	70	80	100	100	100
minimaler Randabstand	c _{min} [mm]	50	50	50	70	70	100
minimale Bauteildicke	h _{min} [mm]	$h_{ef} + t_h + c_{nom}^{1}$					
	12						

¹⁾ c_{nom} = erforderliche Betondeckung entsprechend nationalen Regelungen

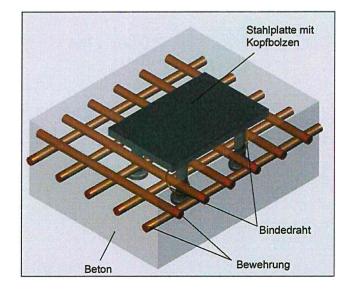
Anordnung der Kopfbolzen


Für die Anordnung der Kopfbolzen auf der Stahlplatte sind die Regelungen gemäß CEN/TS 1992-4-1:2009, Abschnitt 1.2.3 zu beachten.

SB Kopfbolzen aus Stahl

Verwendungszweck
Installationswerte

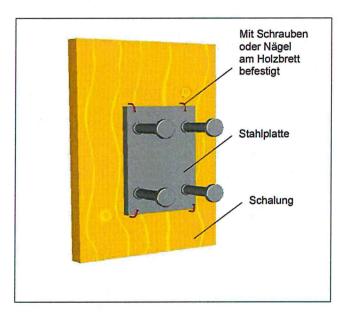
Anhang B3


Montageanleitung

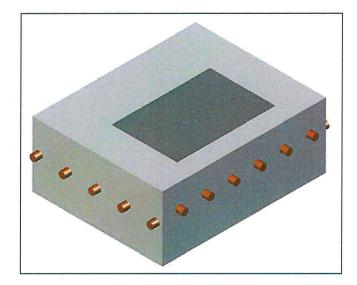
- 1 Anschweißen der Kopfbolzen an Stahlplatten
 - Herstellen der Stahlplatte gem. Konstruktionszeichung(en) (Werkstoff S235JR, S235JO, S235J2, S355JO oder S355J2),
 - Anschweißen der Kopfbolzen an Stahlplatte(en) gemäß Verfahren 783 nach EN ISO 4063, Position der Kopfbolzen entsprechend der Konstruktionszeichnung.

2 a Befestigen der Stahlplatte an Bewehrung

- Befestige Stahlplatte mit Kopfbolzen an der Bewehrung oder an einem Montageeisen, z.B. mit Bindedraht.
- Befestigung so ausführen, dass sich die Stahlplatte beim Betonieren und Verdichten des Betons nicht bewegt.
- Stahlplatte oberflächenbündig mit dem geplanten Betonbauteil ausrichten.


SB Kopfbolzen aus Stahl

Verwendungszweck Montageanleitung Anhang B5


2 b Befestigen der Stahlplatte an der Schalung

- Stahlplatte direkt an der Schalung mit Nägeln, Schrauben oder Bindedraht befestigen.
- Die Stahlplatte muß gut an der Schalung anliegen.
- Befestigung so ausführen, dass sich die Stahlplatte beim Betonieren und Verdichten des Betons nicht bewegt.

3 Betonieren und Verdichten des Betons

- Einwandfreie Verdichtung des Betons im Bereich um die Stahlplatte und Kopfbolzen.

SB Kopfbolzen aus Stahl

Verwendungszweck Montageanleitung Anhang B6

· . .		10	'	13	16	19	22	25
tahlversagen für Kopfbolzen	aus Stahl				·			
harakteristischer Widerstand	N _{Rk,s} [kN]	35	;	60	91	128	171	221
eilsicherheitsbeiwert	γ _{Ms} 1)				1,	54		
erausziehen für gerissenen I	Beton		***************************************					
harakteristischer Widerstand		30		50	90	75	85	120
rhöhungsfaktor ψ für die	C25/30				1,	20	I	
narakteristische Tragfähigkeit	C30/37				1,	48		
	C35/45				1,	80		
	C40/50				2,	00		
	C45/55				2,	20		
	C50/60				2,	40		
eilsicherheitsbeiwert	γ _{Mp} 1)				1	.5		
etonausbruch und Spalten		ustosaus (iiacsis) on	arana (c.s.)			1.		
fektive Verankerungstiefe	h _{ef} [mm]			W-704-10-10-10-10-1	h _n -	$t_h + t^{2)}$		
aktor zur Berücksichtigung des erankerungsmechanismus im erissenen Beton	k _{cr} [-]					8.5		
narakteristischer Achsabstand	$s_{cr,N} = s_{cr,sp}^{3)} [m$	ım]			Š	3 h _{ef}		NNA
narakteristischer Randabstand	$c_{cr,N} = c_{cr,sp}^{3)} [m$	ım]			1	.5 h _{ef}		
eilsicherheitsbeiwert	γ _{Mc} 1)					1.5		

¹⁾ sofern andere nationale Regelungen fehlen

Tabelle 5: Verschiebung unter Zuglast

Kopfbolzen - Nenngröße	10	13	16	19	22	25
Verschiebungen $\delta_{N0}^{1)}$ bei Zugbeanspruchung bis zu 0.7 mm	15	22	31	31	35	48
bei nebenstehenden Lasten in [kN]						

Die angegebenen Verschiebungen gelten nur für Kurzzeitbelastungen, bei Dauerlasten können sich die Verschiebungen $\delta_{N\infty}$ bis auf 1,8 mm erhöhen.

SB Kopfbolzen aus Stahl

Leistungsdaten

Charakteristische Tragfähigkeit und Verschiebungen unter Zuglast

Anhang C1

²⁾ für Einzelkopfbolzen (für zusammengesetzte bzw. Kurze Kopfbolzen siehe Abb. 2 bzw. 3, Anhang 2)

vorausgesetzt eine ausreichende Bewehrung zur Aufnahme der Spaltungskräfte und Begrenzung der Rissweite auf $w_w \le 0.3$ mm ist vorhanden.

Tabelle 6: Charakteristische Widerstände unter Querlast

Kopfbolzen - Nenngröße		10	13	16	19	22	25		
Stahlversagen für Kopfbolzen aus S	tahl								
Charakteristischer Widerstand	V _{Rk,s} [kN]	21	36	54	77	103	132		
Teilsicherheitsbeiwert	γ _{Ms} 1)	1,29							
Betonausbruch auf der lastabgewa	ndten Seite								
Faktor gemäß CEN/TS 1992-									
4.2:2009, Abschnitt 6.3.4 ohne		2.0							
Zugbewehrung	k ₃ ²⁾	2.5							
Teilsicherheitsbeiwert	YMcp 1)	1.5							
Betonkantenbruch									
Wirksame Kopfbolzenlänge	l _f = h _{ef} [mm]	h _n - t _h + t ³⁾							
Wirksamer Außendurchmesser	d _{nom} = d [mm]	10	13	16	19	22	25		
Teilsicherheitsbeiwert	γ _{Mc} 1)	1.5							

- 1) sofern nationale Regelungen fehlen
- 2) ist eine Zusatzbewehrung vorhanden, ist der Faktor mit 0,75 zu multiplizieren
- 3) für Einzelkopfbolzen (für zusammengesetzte bzw. kurze Kopfbolzen siehe Abb. 2 bzw.. 3, Anhang 2)

Tabelle 7: Verschiebung unter Querlast

Kopfbolzen - Nenngröße	10	13	16	19	22	25
Verschiebungen δ _{V0} 1) bei Querbeanspruchung						
bis zu 1,5 mm bei nebenstehenden Lasten [kN]	15	20	30	45	60	75

¹⁾ die angegebenen Verschiebungen gelten nur für Kurzzeitbelastungen, bei Dauerlasten können sich die Verschiebungen $\delta_{V\infty}$ bis auf 2,0 mm erhöhen.

Kombinierte Zug- und Querlast

Der Faktor k_7 ist bei kombinierter Zug- und Querbeanspruchung gemäß CEN/TS 1992-4.2:2009, Abschnitt 6.4.1.3

 $k_7 = 2/3$

SB Kopfbolzen aus Stahl

Leistungsdaten

Charakteristische Widerstände und Verschiebungen unter Querlast kombinierte Zug- und Querbeanspruchung

Anhang C2